
Applying TCP Congestion Control Schemes on NDN and their Implications for NDN Congestion Control

Shuo Yang

Abstract

While congestion control in TCP has been well studied, the future Internet architecture NDN has posed new
challenges for congestion control, given its new features such as receiver-driver, one-Interest-one-Data, in-network-
caching, multi-path and mult-source, etc. The current research on congestion control in NDN mainly focuses on how
to take advantage of these new features with the help from the network. However, this puts more burden on the
network layer and further complicates the network. So far, there is no comprehensive study on what implications
does congestion control in TCP have on NDN? In this project, we will apply both loss-based and delay-based TCP
congestion control schemes to NDN and study their effectivenss for NDN. Further, we expect we can learn from this
experience and come up with better receiver-based congestion control design for NDN.

Introduction

Congestion control is a hot research topic in current NDN research community. The current approaches can be
catagorized into three catagories [1]: 1) receiver-based control; 2) hop-by-hop control; 3) hybrid method. Receiver-
based control works by adjusting Interest sending rate on the reciver side based on RTO values caculated for Interest
packets. Hop-by-hop control relies on intermediate nodes to detect congestion by observing queue size or PIT size
and adjust Interest forwarding rate accordingly. Hybrid method is the combination of the 1) and 2). In this work,
we will focus on receiver-based congestion control.

Receiver-based congestion control has the benefit of high scalability, easy deployment and testing, as it doesn’t
rely on additional information from the network. In addition, we can learn from most TCP and TCP-friendly
congestion control schemes in which end-hosts are responsible for congestion detection and avoidance (just in TCP,
this role is played by senders, while in NDN, the role is played by receiver).

However, it is quite challenging for a pure receiver-based congestion control because 1) congestion detection based
on RTO is not reliable due to connectionless, multi-source and multi-path features introduced in NDN; 2) congestion
detection based on three duplicate ACKs does not work for NDN; 3) a single congestion window cannot adapt to
multi-source and multi-path transfer in NDN.

We argue that even with these limitations, it is still worth studying what implications does congestion control in
TCP have on NDN for the following reasons.

1. In NDN, one Interest corrpesonds to one Data, which follows the reverse path of the Interest, thus makes RTT
a more accuarate measurement of the network capacity bewtween consumer and the data source. Consumer
should take advantage of RTT measurement.

2. For applications like real time video chatting between two persons, regardless of the location, it’s essentially a
point to point communication between a single consumer and a single producer, since content must be generated
by producer in real time and consumed by a single consumer. In such cases, congestion control mechanisms in
TCP is still useful.

3. For the foreseeable future, NDN traffic will co-exist with TCP traffic, thus developing TCP friendly congestion
control for NDN is important for flow fairness among Internet traffic.

Previously, we have studied TCP Reno [2] and TCP Cubic [3] and implemeted similar algorithms in NDN’s file
transfer application ndnchunks. Both Reno and Cubic are loss-based congestion schemes, meaning that they use
packet loss as congestion signal and react to congestion only after loss occurs. There is another interesting delay-based
congestion control scheme for TCP, i.e., TCP Vegas [4], in which sender uses packet delay, rather than packet loss,
as a signal to determine the rate at which to send packets. TCP Vegas detects congestion at an incipient stage based
on increasing RTT values of the packets in the connection. The algorithm depends heavily on accurate calculation
of the Base RTT value. If it is too small then throughput of the connection will be less than the bandwidth available
while if the value is too large then it will overrun the connection.

We believe TCP Vegas is relevant to NDN because without routers’ cooperation, RTT is the only information
consumers in NDN could use to infer the changing condition of the network. In this project, we will implement a TCP

1



Vegas-like algorithm in ndnchunks and evaluate its performance together with Reno and Cubic implementations.
Based on the evaluation, we hope to come up with a new receiver-driven congestion control that is more adaptive to
multi-source and multi-path situation arised in NDN.

TCP Vegas Overview

TCP Vegas is a novel (at the time it’s proposed) approach to TCP congestion avoidance that emphasizes packet
delay, rather than packet loss, as a signal to help determine the rate at which to send packets. Its key techniques
include:

1. fast retransmission: 1) upon receiving duplicate ACK, check if timeout expired and if so, retransmit. It differs
from TCP Reno which only retransmits upon seeing three duplicate ACKs. 2) upon receiving a non-duplicate
ACK (1st or 2nd after retransmission), check if timeout expired and if so, retransmit.

2. congestion window decreases only once during one RTT, unlike Reno, which is possible to decrease the cwnd
more than once during one RTT.

3. proactive congestion avoidance: try to detect incipient stages of congestion by comparing the measured through-
put to the expected throughtput.

4. modified slow start : unlike Reno, which doubles cwnd every RTT, Vegas doubles cwnd every other RTT so
that it can make valid comparsion of the expected and the actual throughtput.

Parameters used for Congestion Avoidance Algorithm:

• baseRTT : RTT of a segment when the flow is not congested, Vegas sets baseRTT to the minimum of all
measured round trip times; it is commonly the RTT of the first segment sent by the connection.

• cwnd: the size (in segments) of the current congestion window.

• expected = cwnd
baseRTT , this is the expected throughput assuming the connection is not congested.

• rttLen: number of segments trasmitted during the last RTT.

• avgRTT : average RTT of the segments acknowledged during the last RTT.

• actual = rttLen
avgRTT , this is the measured current throughtput.

• diff = expected− actual, diff is always ≥ 0.

• two thresholds: α < β, where α triggers window increase(linear) and β triggers window decrease(linear). Vegas
sets α = 1 and β = 3. This can be interpreted as an attempt to use at least one, but no more than three extra
buffers in the connection.

Algorithm 1 TCP Vegas Congestion Avoidance Algorithm

1: procedure CongestionAvoidance()
2: if diff < α then increase cwnd linearly during the next RTT

3: if diff > β then decrease cwnd linearly during the next RTT

4: if α ≤ diff ≤ β then keep cwnd unchanged during the next RTT

5:

Intuitively, the farther away the actual throughput gets from the expected throughput,the more congestion there
is in the network, which implies that the sending rate should be reduced. On the other hand, when the actual
throughput rate gets too close to the expected throughput, the connection is in danger of not utilizing the available
bandwidth.

Considerations for Adapting TCP Vegas to NDN

2



1. Changing baseRTT due to multi-source and multi-path transportation introduced in NDN. Content retrieved
from different sources might experience different RTTs, thus NDN must be able to adapt to different baseRTT
timely to avoid false detection of congestions.

2. Is fast retransmission necessary in NDN? Fast retransmission is the key to TCP congestion control because
of its cumulative acknowledgement. But in NDN, each Data packet is an explict acknowledgement of its
corresponding Interest packet, thus out-of-order data delivery is accepted (maybe normal) in NDN. Moreover,
because of Interest aggregation feature of PIT, retransmitting an Interest that is still kept in PIT has no effect
in retrieving corresponding Data due to Interest aggregation until that Interest lifetime expires. Even worse,
unlike TCP, which can use duplicate ACK as a sign of congestion, loss detection in NDN is quite unreliable
due to multi-source and multi-path transportation. Often time, Data just got delayed but not lost.

Adapting TCP Vegas to NDN

The following techniques are proposed to adapt the idea of TCP Vegas to NDN:

1. baseRTT adaption: beyond two thresholds α and β, introduce another threshold γ where α < β < γ. 1) if
diff > 0 and diff ≤ γ, do the same as TCP Vegas. This is the case where we might be retrieving data from a
constant source. 2) if diff < 0, update baseRTT and start congestion avoidance with the updated baseRTT .
actual > expected implies we need to update baseRTT with the latest sampled RTT (samller value than the
current baseRTT ). In this case we are likely retrieving data from a different source that is closer, thus with
smaller baseRTT . 3) if diff > 0 and diff > γ, update baseRTT with the latest sampled RTT (greater value
than the current baseRTT ) and start congestion avoidance with the updated baseRTT . diff > γ suggests
that we might be retriving data from a different source with is farther away, thus with greater baseRTT .

2. postponed retransmission: for the Interests that are possibly lost as determined by consumer, don’t immediately
retransmit them, instead put in the retransmission queue and only retransmit if 1) all the in-order segments
have been transmitted, or 2) Interest lifetime expires. Therefore, we prioritize the transmission of in-order
segments over those needed retransmission. By doing this we give those Data that might get delayed in the
network some time to arrive, we expect this technique will significantly reduce the number of retransmissions.

3. slow start : we can 1) apply the same slow start technique used by TCP Vegas or 2) apply Reno’s slow start
method while using RTO to detect congestion or 3) apply Reno’s slow start method while using packet hole
(out-of-order delivery) as a sign of congestion to stop slow start.

Algorithm 2 NDN Vegas Congestion Avoidance Algorithm

1: procedure CongestionAvoidance()
2: if diff > 0 and diff ≤ γ then . retriving content from constant source
3: if diff < α then increase cwnd linearly during the next RTT

4: if diff > β then decrease cwnd linearly during the next RTT

5: if α ≤ diff ≤ β then keep cwnd unchanged during the next RTT

6: if diff > 0 and diff > γ then . retriving content from a farther source
7: baseRTT ← the latest sampled RTT (larger)

8: if diff < 0 then . retriving content from a closer source
9: baseRTT ← the latest sampled RTT (smaller)

10:

Related Work

ICP [5] (Interest Control Protocol) adopts the AIMD window adjustment algorithm like TCP, it uses loss-based
model similar with TCP Reno. [6] studied efficiency of receiver-based timeout-driven AIMD flow-control in CCN
when multi-homing is enabled. it is also a loss-based approach.

NDN Vegas implementation in ndncatchunks

3



The source code can be found at https://github.com/imsure/ndn-vegas. The files corrpesond to the Vegas are
chunks/catchunks/pipeline-interests-vegas.hpp and chunks/catchunks/pipeline-interests-vegas.cpp.

Performance Evaluation under Linear Topology

In this section we study the performance of Vegas pipeline against the two loss-based pipelines: AIMD and
CUBIC.

Evaluation Environment:

Two ubuntu VMs running on a Macbook Pro (4 cores, 8GB memory), one runs a consumer, the other one runs
a producer. They forward packets to each other through a UDP tunnel. The link between 2 VMs is shaped to have
a specific RTT using the command:

$ sudo tc qdisc add dev eth1 root netem delay <time in ms>

Evaluation Methodology:

We run three pipelines independently (i.e., no competing flows) for each scenario described below for 5 times,
intending to compare the performance and study the correlation between NDN Vegas performance and link RTT, as
well as vegas parameters.

Evaluation Scenarios:

• Scenario 1: Transferring a 100MB file over a link of 50ms RTT

– Scenario 1-1: α = 5, β = 10 and γ =∞
– Scenario 1-2: α = 10, β = 20 and γ =∞
– Scenario 1-3: α = 20, β = 30 and γ =∞

• Scenario 2: Transferring a 100MB file over a link of 100ms RTT

– Scenario 2-1: α = 5, β = 10 and γ =∞
– Scenario 2-2: α = 10, β = 20 and γ =∞

• Scenario 3: Transferring a 100MB file over a link of 200ms RTT

– Scenario 3-1: α = 5, β = 10 and γ =∞
– Scenario 3-2: α = 10, β = 20 and γ =∞
– Scenario 1-3: α = 20, β = 30 and γ =∞

Results

Figure 1 shows that when link RTT is 50ms, the setting of the Vegas parameters α = 5 and β = 10 is insufficient
for a Vegas flow to utilize the link capacity. Thus we get rid of the Scenario 1-1.

Figure 2 and 3 are the plots for Scenario 1 (1-2 and 1-3), where Figure 1 shows the summary stats collected for
all the 5 runs. The left-most one shows how much time it was taken to complete a 100MB file transfer for each flow.
The middle one shows the number of retransmitted Interests for each flow. The right-most one shows the goodput
for each flow. Figure 3 shows the evolution of congestion window size (cwnd) and transmission rate for each flow
within each run. Figure 4 and 5 are the plots for Scenario 2, while Figure 6 and 7 are the plots for Scenario 3.

4

https://github.com/imsure/ndn-vegas


Figure 1: Plot for Scenario 1-1 (Vegas1: α = 5, β = 10, Vegas2: α = 10, β = 20). Vegas1 flow underutilized the link
capacity .

Figure 2: Summary stats plot for Scenario 1. (RTT=50ms, Vegas1: α = 10, β = 20, Vegas2: α = 20, β = 30)

5



(a) Run #1 (b) Run #2

(c) Run #3 (d) Run #4

(e) Run #5

Figure 3: cwnd and rate plot for Scenario 1. ((RTT=50ms, Vegas1: α = 10, β = 20, Vegas2: α = 20, β = 30)

6



Figure 4: Summary stats plot for Scenario 2. (RTT=100ms, Vegas1: α = 5, β = 10, Vegas2: α = 10, β = 20)

Discussion

There are a few observations based on the results we got.

• Overall, Vegas flows with appropriate parameter settings perform better than AIMD and CUBIC flows. They
took less time to complete, led to less retransmissions and achieved higher throughput. (refer to Vegas2 flow
in Figure 2, 3, 4, 5, 6 and 7)

• AIMD flows favor connections with smaller RTTs. (if we look at Figure 2 where RTT=50ms, we see that AIMD
is almost as good as Vegas2, except for retransmissions, but when we look at Figure 6 where RTT=200ms, the
performance of AIMD is the worst). This is in accordance with RTT-bias of TCP-Reno flows, which also favor
conenctions with smaller RTTs.

• Overall, CUBIC flows show the worst performance and instability. (refer to CUBIC flow in Figure 2, 3, 4, 5, 6
and 7, it only performs better than AIMD when RTT=200ms)

• Choosing appropriate parameters for Vegas is vital to its performance. (e.g., picking α = 5, β = 10 for a vegas
flow when RTT=50ms leads to very poor performance if we look at Vegas1 in Figure 1).

• The impact Vegas parameters has on performance is: the larger α and β, the more aggressive a Vegas flow is.
(larger α means we increase congestion window more often, larger β means we decrease congestion window less
often.) On the contrary, smaller α and β leads to underutilization of a Vegas flow as showed in Figure 1. Thus
we need to strike a balance between overutilization (Vegas3 flow in Figure 6 shows such an example, where it
leads to a higher number of retransmissions) and underutilization by picking appropriate Vegas parameters.

• There seems to be a correlation between the Vegas parameters and link RTT. From Figure 2 and 4, we see
that α = 20, β = 30 is good for RTT=50ms and α = 10, β = 20 is good for RTT=100ms. For RTT=200ms,
if we look at Figure 6, the three set of parameters don’t show very big differences in terms of performance.
But α = 5, β = 10 seems to be more reasonable for it leads to less number of retransmissions (an ideal Vegas
flow should take full use of link capacity while not overutilizing it). Thus it seems that the appropriate Vegas
parameter values are inversely proportional to the RTT of links. Though it needs further study.

7



(a) Run #1 (b) Run #2

(c) Run #3 (d) Run #4

(e) Run #5

Figure 5: cwnd and rate plot for Scenario 2. (RTT=100ms, Vegas1: α = 5, β = 10, Vegas2: α = 10, β = 20)

8



Figure 6: Summary stats plot for Scenario 3. (RTT=200ms, Vegas1: α = 5, β = 10, Vegas2: α = 10, β = 20, Vegas3:
α = 20, β = 30)

References

[1] Y. Ren, J. Li, S. Shi, L. Li, G. Wang, and B. Zhang, Congestion control in named data networking - A survey,
Computer Communications, vol. 86 pp. 1-11, July 2016.

[2] V.Jacobson Modified TCP Congestion Control and Avoidance Alogrithms.Technical Report 30,Apr 1990.
[3] Sangtae Ha, Injong Rhee and Lisong Xu, CUBIC: A New TCP-Friendly High-Speed TCP Variant, ACM

SIGOPS Operating System Review, Volume 42, Issue 5, July 2008, Page(s):64-74, 2008.
[4] Lawrence S. Brakmo and Larry L. Peterson - TCP Vegas: End to End Congestion Avoidance on a Global

Internet.
[5] G. Carofiglio, M. Gallo, L. Muscariello, ICP: design and evaluation of an interest control protocol for content-

centric networking, Proceeding of IEEE INFOCOM Workshop on Emerging Design Choices In Name Oriented
Networking (INFO-COM NOMEN), 2012.

[6] S. Braun, M. Monti, M. Sifalakis, C. Tschudin, An empirical study of re-ceiver-based aimd flow-control
strategies for ccn, Proceeding of IEEE ICCCN, 2013.

9



(a) Run #1 (b) Run #2

(c) Run #3 (d) Run #4

(e) Run #5

Figure 7: cwnd and rate plot for Scenario 3. (RTT=200ms, Vegas1: α = 5, β = 10, Vegas2: α = 10, β = 20, Vegas3:
α = 20, β = 30)

10


