
Large-scale Neural Modeling
in MapReduce and Giraph

Shuo Yang
Graduate Programs in Software

University of St. Thomas
yang9136@stthomas.edu

Nicholas D. Spielman
Neuroscience Program

University of St. Thomas
spie6388@stthomas.edu

Jadin C. Jackson
Department of Biology

University of St. Thomas
jadincjackson@stthomas.edu

Brad S. Rubin
Graduate Programs in Software

University of St. Thomas
bsrubin@stthomas.edu

Abstract—One of the most crucial challenges in scientific
computing is scalability. Hadoop, an open-source implementation
of the MapReduce parallel programming model developed by
Google, has emerged as a powerful platform for performing
large-scale scientific computing at very low costs. In this paper,
we explore the use of Hadoop to model large-scale neural
networks. A neural network is most naturally modeled by a
graph structure with iterative processing. In this paper, we
first present an improved graph algorithm design pattern in
MapReduce called Mapper-side Schimmy. Experiments show that
the application of our design pattern, combined with the current
best practices, can reduce the running time of the neural network
simulation on a neural network with 100,000 neurons and 2.3
billion edges by 64%. MapReduce, however, is inherently not
efficient for iterative graph processing. To address the limitation
of the MapReduce model, we then explore the use of Giraph, an
open source large-scale graph processing framework that sits on
top of Hadoop to implement graph algorithms with a vertex-
centric approach. We show that our Giraph implementation
boosted performance by 91% compared to a basic MapReduce
implementation and by 60% compared to our improved Mapper-
side Schimmy algorithm.

I. INTRODUCTION

There is a growing need for computational scientists to
perform their scientific computing at a large-scale which is
well beyond the capabilities of an individual machine or
workstation. Traditionally, supercomputers are used to achieve
this, but access to supercomputers is limited and expensive.
Fortunately, with the emergence of Apache Hadoop1, an open
source implementation of the MapReduce parallel program-
ming model [1], these needs may be met using commodity
hardware at very low cost. MapReduce is a processing archi-
tecture for large-scale data processing developed by Google. In
this paper, we investigate using Hadoop to model a large-scale
neural network. Unlike well-known problems in areas like
social networking and web connectivities, the use of Hadoop in
scientific computing for fields like computational neuroscience
has not gained much traction. We hope this paper encourages
further exploration into using Hadoop to tackle large-scale
computing problems in these fields.

The graph model is an intuitive way of modeling many real-
world problems, such as the PageRank problem [5]. We can
use the MapReduce model to process large-scale graphs, such
as neural networks. In [2], Lin and Schatz proposed several
enhanced design patterns for MapReduce graph algorithms.

1Apache Hadoop. http://hadoop.apache.org/

These represent the current best practices for large-scale graph
processing in MapReduce.

Based on these current best practices, we propose an
enhanced design pattern that can be used in a large class
of graph algorithms based on message passing. While these
improvements proved to be effective, they could not address
some of the fundamental limitations of the MapReduce model
for graph processing. After briefly discussing these limitations,
we turn to another approach: a vertex-centric abstraction based
on the bulk-synchronous parallel (BSP) model [3], which fits
well for iterative graph processing. We use an open source
graph processing framework Giraph2 to implement the vertex-
centric graph algorithm. Finally, we summarize our work and
give future directions.

II. NEURON MODEL

Neurons are information-processing cells that connect
through synapses with other neurons to form networks whose
coordinated activity is responsible for computational processes
such as cognition, sensory processing, decision-making, action
selection, and reflexes in humans and other animals. A single
neuron’s functional state can be largely characterized by the
electrical potential of its membrane, which changes in response
to synaptic inputs from other neurons. These synaptic connec-
tions from other neurons can be either excitatory, providing
positive current, or inhibitory, providing negative current. The
strength of the current depends on the strength, or weight,
of the synapse that was activated, and the direction of the
current, positive or negative, will raise or lower, respectively,
the membrane potential. When the membrane potential reaches
a critical, threshold value, an all-or-nothing electrical event
called an action potential or “spike” is produced by the neuron.
The spike causes the neuron to activate the synapses of neurons
to which it sends connections, thereby activating positive or
negative currents in these downstream neurons depending on
the type of synapse. Following an action potential, a neuron’s
state is reset, returning the neuron’s membrane potential to
baseline.

Neuroscientists routinely use computational models to ex-
plore how the brain functions. In this paper we use the hybrid
neural model described by Izhikevich [4],

dv

dt
= 0.04v2 + 5v + 140− u+ I (1)

2Apache Giraph. http://giraph.apache.org/

du

dt
= a(bv − u) (2)

with the auxiliary after-spike resetting,

if v ≥ 30mV, then
{
v = c

u = u+ d
(3)

This represents a simple spiking neural model that is as
biologically plausible as the Hodgkin-Huxley model, yet as
computationally efficient as the integrate-and-fire model [4].
Here v represents the membrane potential of the neuron and
u represents the membrane recovery variable that provides
negative feedback to v. After the spike reaches its apex
(+30mV), the membrane potential and the recovery variable
are reset according to the equation (3). Synaptic currents or
injected DC-currents are delivered via the variable I.

Note that in this paper we do not focus on evaluating
the model itself, instead, we take it as an application case
to explore how open source big data technology like Hadoop
can be used to compute the model at a large scale.

From a computer science perspective, the neuron, itself,
is the vertex, and the edges represent directional synaptic
connections between neurons. Next, we will describe in more
detail how we modeled the neural network with MapReduce
and Giraph.

III. GRAPH ALGORITHMS IN MAPREDUCE

A. Overview of MapReduce

MapReduce is a parallel programming model for large-
scale data processing developed by Google. Inspired by the
map and reduce functions commonly used in functional
programming, it abstracts away messy details in distributed
programming (such as synchronization, scheduling and fault
tolerance) and simply leaves programmers with two main
abstractions: Mapper and Reducer. Mappers take key-value
pairs as processing primitives and produces intermediate key-
value pairs, which are then automatically sorted, shuffled and
passed to Reducers by the MapReduce framework, such that
all the values associated with the same key are grouped in a
list and fed to a Reducer. Each Reducer then aggregates these
inputs and generates arbitrary key-value pairs as output. Both
Mappers and Reducers operate in parallel, and can thus process
large-scale datasets efficiently.

B. The general pattern of graph processing in MapReduce

MapReduce provides an enabling technology for large-
scale graph processing. In MapReduce, we can represent
a graph by key-value pairs. Keys denote vertices with an
identifier and some associated metadata while values comprise
local graph structure. The types of the key and value can be a
primitive type (e.g. IntWritable, FloatWritable in Hadoop) or
a complex object (e.g. custom writable in Hadoop).

Many graph algorithms are by nature iterative, including
PageRank and the neural model we just introduced. At each
iteration, the processing can be broken down into three steps
[2]:

1) computations occur at every vertex as a function of
the vertex’s internal state and its local graph structure;

2) partial results in the form of arbitrary messages are
passed via directed edges to each vertex’s neighbors;

3) computations occur at every vertex based on incom-
ing partial results, potentially altering the vertex’s
internal state.

Applying these three steps into MapReduce, each iteration
is a single MapReduce job. Step-1 is naturally implemented
in a Mapper while step-3 is implemented in a Reducer. A
programmer does not have to worry about step-2 since it
is taken care of by the MapReduce framework itself. More
specifically, for the neural model mentioned in section 2,
consider a sample neural network where three neurons N1, N2
and N3 are connected with each other in Figure 1-A. Figure
1-B illustrates the three-step processing for one iteration.

A

B

C

}
N.v

N.u

N.a

N.b

N.c

N.d

N.I = Input current

N.SynapticWeightSum

N.neighbors

= memb. voltage

= recovery

Parameters

Mapper B Intermediate Files Reducer Y

Mapper A Intermediate Files Reducer X

Fig. 1: A sample neural network simulated in MapReduce
(A) an example of three interconnected neurons, with neuron N1
sending ouput connections to N2 and N3, and receiving input synaptic
connections from N2 and N3. The parameters for each neuron can
be encapsulated in a single structure with elements for membrane
voltage, a recovery variable, dynamic parameters, and connectivity.
(B) each simulation iteration is composed of three distinct steps: the
Map step where the state of each neuron is updated and messages (i.e.
spikes) are generated to be sent to its neighbors depending on the state
of each neuron’s membrane voltage variable; the Shuffle-sort step,
which combines messages to the same neighbor and partitions the
messages to be sent to the reducers; and, Reduce step which applies
the incoming messages from a neuron’s neigbors to that neuron’s
list of active inputs. (C) the hardware-level I/O involved in each
processing step in (B) means that there is one read and one write
to disk for each Map step and one read and one write to disk for
each Reduce step.

To fully implement this neural network as a graph algo-
rithm in MapReduce, we need to chain the same MapReduce

2

job together until a certain criterion is reached; in our case, the
computation stops when the maximum number of iterations, or
time steps has been reached. The implications of this iterative
pattern are diagrammed in the Figure 1-C.

C. Basic graph algorithm

Sahai and Sahai [6] gave a detailed illustration on how to
implement the basic graph algorithm in MapReduce for the
neural model. We restate it in Algorithm 1.

ALGORITHM 1: Basic Graph Algorithm in MapReduce

class Mapper
method map (id n, neuron N)

GenerateThalamicInput (N)
UpdateInternalState (N)
if N.v ≥ 30 then

foreach edge ∈ N.neighbors() do
Emit (edge.id, edge.weight)

N.v ← N.c
N.u ← N.u + N.d

Emit (id n, neuron N)

class Reducer
method reduce (id n, [w1, w2, . . .])

sum ← 0
neuron N ← ∅
foreach w ∈ [w1, w2, . . .] do

if IsNeuron(w) then
N ← w

else
sum ← sum + w

N.SynapticWeightSum ← sum
Emit (id n, neuron N)

function GenerateThalamicInput
if N.type = ’Excitatory’ then

N.I ← 5 × Random([-1, 1])
else

N.I ← 2 × Random([-1, 1])

function UpdateInternalState(neuron N)
N.I ← N.I + N.SynapticWeightSum
N.v ← N.v+0.5×(0.04×N.v2+5×N.v+140-N.u+N.I)
N.v ← N.v+0.5×(0.04×N.v2+5×N.v+140-N.u+N.I)
N.u ← N.u + N.a×(N.b×N.v-N.u) N.SynapticWeightSum ← 0
N.time ← N.time + 1

Note that the above pseudocode is just a high-level de-
scription of the algorithm. Also, note that we abstract the
thalamic input generation and internal neuron state processing
into two helper functions and we will not mention them in
the upcoming improved MapReduce graph algorithm. The
algorithm corresponds to the three steps mentioned before.
The network graph is constructed as key-values pairs in which
the key is a unique id to identify a neuron and the value
represents the internal state of a neuron and its local structure.
These pairs are sent to each mapper as input. The mapper
performs computations in step-1 where each individual neuron
is processed and its internal state is updated. The entire neuron
structure is passed to the reducers and if the neuron fires, it will
also send synaptic weight messages to all its neighbors. This
corresponds to step-2, where message shuffling and sorting
occurs. The MapReduce framework takes care of routing of
messages to ensure values associated with the same key are
grouped together and delivered to the same reducer. In the
reducer, all weight messages that are destined to the same
neuron arrive together and are summed, and also include

the neuron structure itself. We need a function IsNeuron()
to distinguish between weight messages and neuron structure.
The reducer finally updates the synaptic summation field of the
neuron with the total weights emitted to a neuron, and writes
the neuron data to the underlying HDFS, making it available
as input for the next iteration’s mapper. This is step-3. Each
MapReduce job corresponds to one iteration of the algorithm.

D. Current best practices of graph algorithm in MapReduce

In [2], Lin and Schatz proposed two improved design
pattern of graph algorithms in MapReduce which are In-
Mapper Combining (IMC) and Schimmy. These are the current
best practices for larges-scale graph processing in MapReduce.
In this section we will give a brief review of both.

1) In-Mapper Combining (IMC): A large class of graph
algorithms in MapReduce share a simple feature: mappers
perform some computations on each vertex and emit messages
to some of its neighbors. Reducers then group those messages
in some fashion and then update the vertex’s internal state.
However, local aggregation can be done on messages before
sending them to reducers in order to reduce the network traffic
between map and reduce.

Algorithm 2 shows the improved graph algorithm using
IMC.

ALGORITHM 2: Graph Algorithm using IMC

class Mapper
method setup ()

H ← AssociativeArray
method map (id n, neuron N)

GenerateThalamicInput (N)
UpdateInternalState (N)
if N.v ≥ 30 then

foreach edge ∈ N.neighbors() do
H{edge.id} ← H{edge.id}+edge.weight

N.v ← N.c
N.u ← N.u + N.d

Emit (id n, neuron N)
method cleanup ()

foreach id n ∈ H do
Emit (id n, value H{n})

Prior to processing any key-value pairs, the mapper first
calls the setup method to initialize an instance of an associative
array (e.g. a HashMap in Java) which maps a set of keys to
a set of values. This associative array is updated whenever a
neuron fires. However, emitting the messages is deferred to the
cleanup phase where all messages with the same destination
neuron have been aggregated, thus only a single message
is emitted for each neuron. The downside of the IMC is
the extensive usage of the local memory, which can cause
swapping and become a performance bottleneck. Note that in
the IMC pattern, the reducer code remains unchanged.

2) Schimmy: In the basic graph algorithm or IMC, the
graph structure will be passed and shuffled across the net-
work. This is very undesirable for the large graph datasets
because the graph structure is usually much larger than the
messages passed along the graph edges. Schimmy is designed
for avoiding the shuffling of the graph structure. It is inspired

3

by a well-known join-technique in the relational database field
called a parallel merge join [7]. Suppose two relations, S and
T , were both partitioned (in the same manner by the join key)
into ten files and in each file, the tuples were sorted by the
join key. In this case, we simply need to join the first file of
S with the first file of T , etc. These merge joins can happen
in parallel. Schimmy applies this idea in MapReduce graph
processing by partitioning the graph into n parts, such that a
graph G = G1∪G2∪. . .∪Gn, and within each part, vertices are
sorted by vertex id. Hadoop provides a Partitioner interface for
users to write their custom partitioner, therefore as long as we
use the same partition function for partitioning the graph in the
MapReduce graph algorithm, and set the number of reducers
equal to the number of input partitions, Hadoop’s MapReduce
runtime system guarantees that the intermediate keys (vertex
ids) processed by the reducer R1 are exactly the same as vertex
ids in G1 and sorted in the same order; the same for R2 and
G2 until Rn and Gn. Further, the intermediate keys in Rn

represent messages passed to each vertex, and Gn key-value
pairs comprise the graph structure. Therefore, a parallel merge
join between Rn and Gn can merge the results of computations
based on message passed to a vertex and the vertex’s local
structure, thus enabling the update of the vertex’s internal state.
In doing this we no longer need to shuffle the graph structure
across the network. Algorithm 3 illustrates the MapReduce
algorithm with Schimmy implemented for the neural model.

ALGORITHM 3: Graph Algorithm with Schimmy

class Mapper
method map (id n, neuron N)

GenerateThalamicInput (N)
UpdateInternalState (N)
if N.v ≥ 30 then

foreach edge ∈ N.neighbors() do
Emit (edge.id, edge.weight)

N.v ← N.c
N.u ← N.u + N.d

class Reducer
method setup ()

G.OpenGraphPartition()
method reduce (id m, [w1, w2, . . .])

sum ← 0
repeat

(id n, neuron N) ← G.Read()
if n 6= m then

Emit (id n, neuron N)
until n = m;
foreach w ∈ [w1, w2, . . .] do

sum ← sum + w
N.SynapticWeightSum ← sum
Emit (id n, neuron N)

Note that the mapper code remains nearly unchanged
except for the deletion of the line emitting the graph structure.
The reducer first opens the corresponding graph partition
in the setup method. Then it advances through the graph
structure until the corresponding vertex’s structure is found.
After jumping out of the loop, the vertex’s internal state is
updated and written back to the file system. The partitioner
ensures consistent partitioning of the graph structure from
iteration to iteration.

Although Schimmy eliminates the graph structure shuf-
fling, it introduces remote file reading, as files containing

graph partitions reside on the underlying distributed file system
(HDFS for Hadoop) and the MapReduce runtime system
arbitrarily assigns reducers to cluster nodes. This is potentially
a performance bottleneck. The Schimmy pattern works well
for the PageRank problem as discussed by Lin and Schatz in
[2], but as we will see later, in our case, it does boost the
performance.

3) Improved graph algorithm design pattern - Mapper-side-
Schimmy: Inspired by the Schimmy pattern, we found that
not only shuffling the graph structure is unnecessary, but in
many algorithms, the graph structure itself is read-only. In
Schimmy, the reducer remotely reads the graph structure and
writes it back to the distributed file system after updating the
vertex’s internal state. To avoid the often unnecessary step
of writing out the graph structure, we propose an improved
design pattern: Mapper-side Schimmy, where we move the
Schimmy to the mapper side and separate the vertex’s internal
state with the read-only graph structure such that the graph
structure is read only once by the mapper and the reducer’s
tasks are simplified. This idea is illustrated as pseudo-code in
the Algorithm 4.

ALGORITHM 4: Mapper-side Schimmy

class Mapper
method setup ()

G.OpenGraphPartition()
method map (id n, NeuronState N)

GenerateThalamicInput (N)
UpdateInternalState (N)
if N.v ≥ 30 then

repeat
(id m, neuron M) ← G.Read()

until n = m;
foreach edge ∈ M.neighbors() do

Emit (edge.id, edge.weight)
N.v ← N.c
N.u ← N.u + N.d

Emit (id n, NeuronState N)

class Reducer
method reduce (id n, [w1, w2, . . .])

sum ← 0
foreach w ∈ [w1, w2, . . .] do

if IsNeuronState(w) then
N ← w

else
sum ← sum + w

N.SynapticWeightSum ← sum
Emit (id n, neuron N)

As we can see, in the Mapper-side Schimmy design pattern,
a mapper no longer takes the entire graph structure as the
value, instead, the value only contains a neuron’s internal
state (NeuronState). It remotely reads the graph partition
corresponding to the input key-value pairs. Note that, just like
Schimmy, we must use the same partition function for parti-
tioning the graph as the partitioner in the MapReduce graph
algorithm, and set the number of reducers equal to the number
of input partitions. In the reducer, we still need a function
(IsNeuronState) to distinguish between the synaptic weight
and the neuron’s internal state. By moving the Schimmy to the
mapper side and separating the read-only graph structure with
the vertex’s internal state, we eliminate the need of writing the
entire graph structure back to the distributed file system. The

4

graph structure is, therefore, only read once with this pattern.

IV. GRAPH ALGORITHM IN GIRAPH

Although MapReduce is an enabling technology for large-
scale graph processing, it is far from ideal. No matter how we
improve the design pattern for graph algorithms, MapReduce
is not a suitable model for iterative graph processing per
se. First, it is unnecessarily slow because each iteration is
a single MapReduce job with lots of overhead, including
scheduling, reading the graph structure from disk, and writing
the intermediate results to the distributed file system. Second,
the MapReduce abstraction is not intuitive for expressing graph
algorithms as programmers have to “think in key-value pairs”
in designing graph algorithms, thus making algorithms hard to
implement and code hard to read and understand. Finally as
we found in the Schimmy pattern and Mapper-side Schimmy
pattern, the best strategy is data dependent and, therefore, hard
to generalize.

As an alternative to the MapReduce model, we find that
the vertex-centric approach is more powerful than MapReduce
in expressing iterative graph algorithms. It employs a “think-
like-a-vertex” programming model to support iterative graph
computation. Each vertex is a single computation unit, which
contains its internal state and all outgoing edges. Thus, the
abstraction is made on a vertex-centric level, which is more
intuitive for graph algorithms. The computation for a vertex
involves receiving messages from its incoming edges, updating
its internal state and sending the messages to other vertices
along its outgoing edges.

Apache Giraph is an open source software framework for
large-scale graph processing. It is a loose implementation
of Google’s Pregel [8]. Both Pregel and Giraph employ a
vertex-centric programming model. Because Giraph is open
source, we chose Giraph to implement the neural model.
Giraph uses Bulk synchronous parallel (BSP) as its execution
model. A BSP computation consists of a series of global
supersteps3. Each superstep consists of three components: 1)
concurrent computation: each processor is assigned a number
of vertices and processes in parallel; 2) communication: the
processors exchange messages between each other; 3) barrier
synchronization: when a processor reaches the barrier, it waits
until all other processors finish their communications. The BSP
model is illstrated in the Figure 2-A. Based on vertex-centric
model and BSP, we can express the processing for the small
neural network in the Figure 2-B.

Algorithm 5 shows pseudo-code for the graph algorithm as
a vertex-centric model. We can see that the algorithm expressed
by a vertex-centric BSP model is more intuitive, because we
treat each vertex as a class and a single computation unit.
We limit the simulation to 40 iterations. In each iteration, the
compute method is called, it sums a list of messages sent from
the previous iteration and updates the neuron’s state, sending
outgoing messages if the neuron fired. The computation halts
if the maximum number of iterations has been reached.

Note that methods like getSuperstep, getV ertexV alue,
getEdges, setV ertexV alue and voteToHalt are provided by

3Bulk synchronous parallel.
http://en.wikipedia.org/wiki/Bulk synchronous parallel

Barrier

Sync

Barrier

Sync

A

B

Fig. 2: BSP Model applied to Graph processing with a vertex-
centric approach
(A) the barrier synchronization processing (BSP) model waits for
processing for different computations within an iteration to complete
and send out their messages before beginning processing the next
iteration, this forced wait comprises a barrier synchronization and
segregates processing within each iteration into a single Superstep.
(B) this BSP model lends itself well to a vertex-centric approach
where all of the computations for a single neuron are performed
on a single processor and outgoing messages about that neuron’s
activity are determined and distributed to other neurons before the
next iteration’s superstep begins.

the frameworks like Pregel or Giraph, with different naming
conventions.

V. RESULTS

For MapReduce graph algorithms, we implemented five
versions: 1) basic implementation; 2) IMC; 3) Schimmy; 4)
Mapper-side Schimmy; 5) the combination of Mapper-side
Schimmy and IMC. We also have implemented a vertex-centric
graph algorithm with Giraph. We tested our implementations
on a Hadoop cluster with 16 worker nodes, 192 map task
capacity and 96 reduce task capacity, running Hadoop-2.0. A
neural network with 100,000 neurons and 2.3 Billion edges
was implemented with an approximate size of 24GB (depend-
ing on the different implementations). First, we compared the
running time for a 40 ms simulation (40 iterations) among six
implementations (See Figure 3-A).

Although Schimmy has been proven to be effective in
PageRank applications, it did not boost performance for our
neural model. However, the Mapper-side Schimmy pattern
improved performance by 11%. IMC, despite its simplicity,
improved performance by 48%. We found that the combination
of Mapper-side Schimmy and IMC produced the best result
among these five MapReduce implementations and improved
the performance by 64%. The Giraph implementation showed
the best performance boost, which was 91% compared to the

5

ALGORITHM 5: Graph Algorithm in vertex-centric model

class NeuronVertex
MaxSuperStep ← 40
method compute (messages [m1, m2, . . .])

if getSuperstep() ≤ MaxSuperStep then
sum ← 0
foreach w ∈ [m1, m2, . . .] do

sum ← sum + m
neuron ← getVertexValue()
neuron.SynapticWeight ← sum
GenerateThalamicInput (N)
UpdateInternalState (N)
if neuron.v ≥ 30mV then

foreach edge ∈ getEdges() do
sendMessage (edge.getVertexID(),
edge.getValue())

neuron.v ← neuron.c
neuron.u ← neuron.u + neuron.d

setVertexValue (neuron)
else

voteToHalt()

basic MapReduce implementation. Compared to the Mapper-
side Schimmy + IMC implementation, Giraph had a 60%
performance improvement.

During experiments, we also recorded the running time of
each iteration in order to see how each implementation per-
formed as the network activity evolved (Figure 3-C). Usually,
after approximately the 13th iteration, neurons started firing in-
tensively, which led to huge amount of network traffic. The Ba-
sic, Schimmy and Mapper-side Schimmy implementations all
suffered from the increasing network traffic, while Basic+IMC,
Mapper-side Schimmy+IMC and Giraph implementations all
benefited from in-memory computation, with Giraph showing
superior performance.

VI. CONCLUSION

Compared to Schimmy, this work presents an improved
MapReduce graph algorithm design pattern which has been
shown to be effective in the neural model we implemented. It
can be applied to a large class of graph algorithms based on
message passing. One limitation of the Mapper Side Schimmy
implementation, is that it assumes there are no changes in
the synaptic weights between neurons, an important feature
of associative learning models. However, we addressed many
inherent limitations of applying the MapReduce model to
graph algorithms by exploring another approach, a vertex-
centric BSP model, implemented with the open source large-
scale graph processing framework Giraph. Using Giraph not
only led to better performance, but also reduced the com-
plexity of implementation. Our results suggest that application
of our Mapper-side Schimmy design pattern and Giraph to
other graph processing problems, such as PageRank, could
potentially boost their performance.

REFERENCES

[1] J. Dean and S. Ghemawat, MapReduce: Simplified data processing on
large clusters, In Proceedings of the 6th Symposium on Operating
System Design and Implementation (OSDI 2004). pages 137-150, San
Francisco, California, 2004.

[2] Jimmy Lin and Michael Schatz, Design Patterns for Efficient Graph
Algorithms in MapReduce, MLG 10. Washington, DC USA, 2010.

Fig. 3: Comparison of running times for different graph process-
ing methods
(A) comparison of running times of 40 iterations, we use the ”Basic”
implementation as a benchmark for measuring the performance. (B)
comparion of running times from 20 ms to 40 ms for steady-state
network activity. Note that the ranking of computational savings is
the same when considering only steady-state firing.(C) shows how
performances vary for each iteration. After approximately 13 msec,
the networks enter full-firing mode, where many more neurons are
active in the network.

[3] Leslie G. Valiant, A bridging model for parallel computation, Commu-
nications of the ACM, Volume 33 Issue 8, Aug. 1990.

[4] E. M. Izhikevich, Simple model of spiking neurons, IEEE Transactions
on Neural Networks, 14(6):1569-1572, 2003.

[5] L. Page, S. Brin, R. Motwani, and T. Winograd, The PageRank citation
ranking: Bringing order to the web, Technical Report 1999-66, Stanford
InfoLab, November 1999.

[6] Esha Sahai and Tuhin Sahai, Mapping and Reducing the Brain on the
Cloud, arXiv:1207.4978, August 14, 2012.

[7] D. A. Schneider and D. J. DeWitt, A performance evaluation of four
parallel join algorithms in a shared-nothing multiprocessor environment,
In Proceedings of the 1989 ACM SIGMOD International Conference on
Management of Data, pages 110-121, Portland, Oregon, 1989.

[8] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn, N. Leiser,
and G. Czajkowski, Pregel: a system for large-scale graph processing,
In SIGMOD10, pages 135-146, 2010.

6

